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Higher-Order Mechanical Systems with Constraints 

Manuel de Le6n ~ and Paulo R. Rodrigues 2 

Received August 22, 1991 

We extend Weber's approach for mechanical systems with constraints in terms 
of differential-geometric structures underlying higher-order tangent bundles. 

1. INTRODUCTION 

Differential geometry provides a good framework for studying Lagrang- 
ian and Hamiltonian formalisms of classical mechanics. However, something 
lacking on constraints and their geometric meaning has been remarked [see 
the final comments in Spivak (1979), Vol. V, p. 600, for instance]. Con- 
strained Lagrangian systems are studied in Arnold (1988) and a particular 
case is presented (called vakanomic mechanics) due to Koslov (1983). This 
kind of mechanics is based on a natural generalization of Hamilton's prin- 
ciple [see Arnold (1988) for further details]. Constrained systems were also 
considered by Dirac (1964), but with a different meaning, since they are 
characterized by degenerate Lagrangians. 

More recently, Weber (1985) developed a geometric formulation of 
Hamiltonian systems with constraints using a set C= { a ~ , . . . ,  at} of lin- 
early independent 1-forms on a symplectic manifold (S, co) of dimension 2n, 
r<n. t f  this set defines an integrable distribution on S, then C is said to be 
holonomic (otherwise it is said to be nonholonomic or anholonomie). If we 
suppose that S is fibered over an n-dimensional manifold M, then holonomic 
and nonholonomic constraints can be classified in basic or semibasie l-forms 
with respect to this fibration. Under certain conditions it is possible to 
show that holonomic (resp. nonholonomic) constraints can be canonically 

mUnidad de Matemhticas, Consejo Superior de lnvestigaciones Cientificas, Serrano 123, 
28006 Madrid, Spain. 

2Departamento de Geometria, Instituto de Matematica, Universidade Federal Fluminense, 
24020-Niteroi, R J, Brazil. 

1303 
0020-7748/92/0700-1303$06.50/0 �9 1992 Plenum Publishing Corporation 



1304 de Lebn and Rodrigues 

transformed into basic (resp. basic or semibasic) 1-forms locally expressed 
by dx A [resp. aoA(X) dx A or a] (x , y )  dxA], 1 <A<_n, l < a < r ,  where (x A) 
[resp. (x A , yA)] are local coordinates for M (resp. S). 

With such a kind of geometric classification Weber examines regular 
Hamiltonian (and Lagrangian) systems with constraints. Taking S = T * M  
as the cotangent bundle of the configuration manifold M and a function 
H: T * M  ~ R as the Hamiltonian, we may consider a set of linearly indepen- 
dent 1-forms C= {a~ . . . .  , at}, r<n, on T*M. The corresponding motion 
equations are 

i(X)co =dH + Aaaa, a , (X)  =0 

where co is the canonical symplectic form on T * M  and the A's are Lagrange 
multipliers. If we assume that H is regular [the matrix (O2H/Op A Op B) is 
invertible everywhere, (qA, pA) are local coordinates for T ' M ] ,  then a trans- 
formation Ham: T * M  ~ TM is used to obtain the Lagrangian counterpart. 
We have a new system (TM, coL, E), where TM is the tangent bundle of M, 
coL is the symplecti c form on TM, obtained from co via the inverse of Ham, 
denoted by Leg, and E is the energy of the new system, defined by E o Ham = 
H. The motion equations are given in the symplectic form 

i( Y~)coL = dE 

but now with a significant difference: Ye must be a second-order differential 
equation, since the integral curves of )re must satisfy the Euler-Lagrange 
equations. A condition for this is that the energy E be locally defined by 

E= v'~(OL/~v A) - L 

where L: TM ~ R is the Lagrangian and (qA, vA) are coordinates for TM. 
In such a case Weber says that (TM, coL, E) is a (regular) mechanical system. 
The constrained situation is now obtained by pulling back the original con- 
straints on T*M to TM via Leg: T M ~  T*M and Weber proves that a 
(regular) Hamiltonian system with constraints admits a mechanical system if  
and only i f  the constraints are of  semibasic (or basic) type. 

Our purpose is to extend Weber's viewpoint to mechanical systems of 
higher order, i.e., systems which are not only dependent on position-velocity 
coordinates, but also accelerations and higher-order derivatives with respect 
to the time [for a local description see Whittaker (1959), p. 265]. First we 
derive a global formulation on higher-order tangent bundles (a natural gen- 
eralization of tangent bundles) for Lagrangians with constraints, without 
assuming the existence of a Hamiltonian counterpart. Second we examine the 
Hamiltonian case. In order to do so, a higher-order almost tangent geometry 
is used (Clark and Bruckheimer, 1960; Eliopoulos, 1962). Klein (1962) 
showed that this kind of geometric structure plays a role in Lagrangian 
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dynamics like symplectic geometry in Hamiltonian dynamics [further details 
about almost tangent geometry can be found in Godbillon (1969) or de 
Le6n and Rodrigues (1989)]. 

Finally, we would like to remark that this work was in its final form 
when the authors noticed a recent paper by Cardin and Zanzotto (1989) on 
(first order) mechanical systems with (holonomic) constraints. For instance, 
in the definition of a constrained mechanical system one requires an 
embedded constraint manifold Q with no boundary in the configuration 
manifold and an appropriate subbundle of the vector bundle of the semibasic 
forms restricted to the tangent bundle of Q. 

This assumption is not adopted here since the (holonomic) system of 
constraints C defines a (2n-r)-dimensional distribution D on S (= TM 
or T ' M )  

D(x) = {XsTxS/ao(X)=0,  1 ___a <r} 

for each xsS .  Hence C is holonomic if the ideal E of AS generated by C 
satisfies dE c E, i.e., E is a differential ideal. Thus, for a system of holonomic 
constraints the motion lies on a specific leaf of the foliation defined by D, 
that is, the constraints emerge as foliations of the phase space S. 

The paper is divided in the following way. In Section 2 we recall some 
results about the higher-order formalism and some essential terminology [de 

�9 Le6n and Rodrigues (1985) give further details; see also the Appendix], 
which is still nonstandard in the literature. In Section 3 we give a different 
insight about extending Weber's results to higher-order Lagrangian systems 
with constraints; the Hamiltonian version is also presented. An example is 
given in Section 4. 

2. BACKGROUND 

Let TSQ be the tangent bundle of order s of an m-dimensional manifold 
Q, i.e., TSQ is the manifold of s-jets at 0eR of curves in Q. If  (qA), 1 <A <m, 
are coordinates in Q, we denote by (z~), 1 <A<m,  O<i<s, the induced 
coordinates in T'~Q. If o-(t) = (qA(t)), then 

z~(j~cr) = (1/i!)(di/dti)(qA(t)),=o 

We set z0 ~ = qA. Sometimes we use coordinates (q/A), where 

q~=(i!)z A, l <_A<_m, O<i<s 

The canonical projection p~: T~Q ~ TrQ, r < s, is defined by p~(j~cr)=foOt. 
We denote by J1 the canonical almost tangent structure of order s on TSQ. It 
is a (1, 1)-tensor field such that locally 

J, = ~ (a/az~)| (az~_.) (1) 
i=1 
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We set J . = ( J , ) "  (i.e., Ji u-times). From (1) we deduce that J , = 0  when 
u > s + 1. By Cj we denote the Liouville vector field on TSQ, locally given by 

C1 = ~ (i)z~(O/Oz~) 
i = l  

We set Cu=Ju_lCl, 2<_u<s. It can be shown that a vector field ~ on TSQ 
is an ( s+  1)th-order differential equation if and only if Jl~ = C1; sometimes 
(s+ 1)th-order differential equation s will be called semisprays of  type 1 
[sprays were introduced by Ambrose et al. (1960) for homogeneous second- 
order differential equations]. 

Semibasic forms are defined as a natural generalization of the standard 
case of first order: a l-form a on T~Q is said to be semibasic of  type u if 
a ~ I m  J* ,  where J*  is the adjoint of J~ acting on forms. Hence, a is semi- 
basic of type u if and only if a is locally expressed by 

s -- i1 
i 4 

a =  Z . . . .  , (2) 
i=O 

where the above sum is taken over O<i<_s-u. 
Let us consider now a Lagrangian function L of  order k ,  that is, a 

function L: T k Q ~ R .  There exists a 1-form aL on T2k-~Q intrinsically 
defined by 

k-I 1 
- ( -1 )drd j ,+ ,L  a L =  Z i i 

i = 0  1 . 

where i _ d r - d r "  �9 " dr (i times) and dr is the operator which maps each func- 
t i o n f o n  T~Q into a function d r f o n  T~+~Q locally given by 

dTf(q~, . . . , q ; ) =  ~ q~+,(Of/cOq;) 
i = 0  

(dT extends naturally to an operator mapping p-forms on T'~Q into p-forms 
on T ' + l Q and we use the same symbol for both situations). Then the coordi- 
nate expression of aL is 

k - I  

aL= E P(+' dq{ 
t = 0  

where 

k - i - I  

p{+, = ~ (-1)Jd'r(OL/Oq~+j+,), O < i < k -  1 (3) 
j = 0  
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Remark 2.1. Notice that p~+l depends at most in qAt-l-~ and 

Opf+, = ( - I  t - l - i {  02L '~ 
Oqgt~-t-i ) t ~ )  

Thus, aL is a semibasie 1-form of  type k on T2t-lQ and defines a 
mapping (see the Appendix) 

Leg: T 2 t - I Q ~  T*(Tk-IQ) 

such that 

] ' ( T  k I e o Leg=p~-i I and Leg*(Ak-i)=aL 

where ~k-1 is the canonical Liouville form on T* T k-~Q. In local coordinates 
we have 

Leg(qA . . . . .  qA2t_, ) = (qg . . . . .  q,~_, ,p,~ . . . . .  pA) 

Leg is called the Legendre-Ostrogradskii transformation. It is the natural 
generalization of  the Legendre transformation to higher-order theories and, 
for the regular case, gives the way to pass from the Lagrangian to the 
Hamiltonian formulation. In fact, (3) may be taken as the definition of 
generalized momenta. If  cot_ ~ = - d,t.t_ 1 is the canonical symplectic form on 
T*(Tk-1Q), we have 

Leg*cot_ l = COL 

where COl = - da L. 
A Lagrangian L is said to be regular if the Hessian matrix 

(OZL/Oq~ Oq~) is nonsingular. It can be shown that L is regular iff col is 
symplectic iff Leg: T 2t- l Q -~ T* ( T t -  i Q) is a local diffeomorphism. For regu- 
lar Lagrangians one defines intrinsically the energy function EL on Tak-IQ 
by 

t 1 
~L = Z _ ( - 1 ) i - l d ~ - l ( C ; L )  - L  

i = I  / 

and the vector field ~L defined by i(~L)cor = dEL is a 2kth-order differential 
equation (or semispray of type 1) on T 2t- l Q. Furthermore, the solutions of 
~t. satisfy the Euler-Lagrange equations for L: 

k 

Z ( -  lf(d'/d{)(OL/Oq A) = 0 
i = 0  

Thus, if L is a regular Lagrangian, we call (T2k-IQ, o~L, Et.) a regular 
Lagrangian system of order k. 
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3. LAGRANGIAN AND HAMILTONIAN SYSTEMS OF HIGHER 
ORDER WITH CONSTRAINTS 

Let C= {01 . . . . .  0r} be a set of r linearly independent 1-forms on 
T2k-iQ. Then (T2k-~Q, coL, EL, C) is called a regular Lagrangian system 
with constraints. Let us now consider the equation 

i(~)coL=dEr~+ ~ A"0a, 0, , (~)=0,  A"#0 ,  Va (4) 

Definition 3.1. We say that (T 2~- ~Q, coL, EL, C) represents a mechan- 
ical system of order k (with constraints) if the vector field ~ given by (4) is 
a 2kth-order differential equation. 

We recall that there always exists such ~, since col is symplectic, but 
is not necessarily of 2kth-order type. 

Lemma 3.1. Let X be a vector field on T2k-'Q given by fiX)coL = & 
Then J~X = 0 if and only if 0 is semibasic of type 2 k -  1. 

Proof Suppose that J~X=O. Then X=XA(O/Oqgk-~). As 
k - 1  

co = Y aqJ 
i=0  

we have 

/ OL 0 = - ~X A 
~qAk--~qg) dq~ 

B 

Thus, 0 is semibasic of type 2 k -  1. Conversely, suppose that 0 is semibasic 
of  type 2 k -  1. Then 0 = 0A dqg. We set 

2 k -  1 

x=Ex -- 
i=0 Oqi A 

Then, taking into account the remark of Section 2 and developing iO()coL = 
0 in local coordinates, one obtains, for instance, 

( 
\Oq2Sk- , ] 

that is, Xo A = O. Also, the same development shows that among the remaining 
terms 

x r  . . . . .  x;k_2=o 

[indeed, it is sufficient to see that (i(X)coD(O/Oqgk_O=O, etc]. Thus, 
J1X = O. �9 
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Theorem 3.1. (T 2k- 1Q, o~L, EL, C) represents a mechanical system of 
order k if and only if the 1-forms O, are semibasic of type 2 k -  1. 

Proof Let X6 be the vector fields given by i(X6)coL= 0,, 1 <a<r. Then 
from (4) one has that 

i( ~ - A6X~) co L = dEL = i( ~L)COL 

i.e., 

and ~ is a semispray of type 1 iff Jl~ = C~ iff JIXa=O, 1 <_a<r. But J~Xa= 
0 iff 0~ is semibasic of type 2 k -  1 by the above lemma. �9 

If (T 2~- 1 Q, ogL, EL, C) represents a mechanical system of order k, then 
the 1-forms 06 are locally given by 

0.= ( 06)A(qg . . . . .  q~-1) dqg 

This implies that r<m. A direct computation shows that the solutions 
of (4) satisfy the following Euler-Lagrange equations with constraints: 

k 

(-l)'(d'/dfl)(OL/Oq~) = A"(06)A, 1 <A _<m 
i=0  

In addition, since 06(~) =0, we have (0,)A(0a) =0, 1 <a<_r. Thus, a direct 
constraint formulation for Lagrangian systems was performed without using 
first the constraint formulation for Hamiltonian systems as proposed by 
Weber. 

If we want to examine the Hamiltonian counterpart of such a kind of 
Lagrangian theory, then we first examine the above Legendre-Ostrogradskii 
transformation. If Leg is only a local diffeomorphism, then we define the 
local Hamiltonian function H on T*(T~-~Q) by Ho Leg=EL. If Leg is a 
global diffeomorphism, i.e., L is hyperregular, then we have the equivalence 
of the both formulations and the Hamiltonian function H is globally defined. 

Let us examine the other direction, that is, we suppose that we are 
starting with a Hamiltonian system defining a mechanical system of higher 
order. Consider a regular Hamiltonian system (T*(Tk-~Q), ~Ok-~, H, C) 
with constraints C= { 0 , , . . . ,  0r). We denote by 

(q0 A . . . . .  q~-,, p~ . . . . .  p~) 

the induced coordinates in T*(T k- 1Q). If H is regular [the Hessian matrix 
(OZH/Op~ Opt), 1 <i , j<k,  1 <_A, B < m = d i m  Q, is nonsingular everywhere], 
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then there exists a fiber-preserving mapping Ham: 

T * ( T k - I Q )  ~ T ( T k - ' Q )  

locally defined by 

Ham(q{,  p~) = (q~ , (OH~Opt)) 

and Ham is a local difreomorphism. Thus, we may define a function 
L': T(Tk-1Q) --+R given by L'(q~, q,'A) =Z,-,k (OH/3p~)p~-H.  

Now, let j :  TkQ-~ T(T~- IQ)  be a canonical injection locally defined by 

j(qg . . . . .  q~) = (qg . . . .  , qg-, ; qf . . . .  , qg) 

A Lagrangian function L: TkQ ~ R of order k may be defined by L =  
L' oj. A direct computation shows that L is regular and the corresponding 
Legendre transformation Leg: T 2k- 1Q ~ T*( T k- I Q) satisfies H o Leg = EL. 

Definition 3.2. ( T*( Tk-1Q), COk-I, H, C) defines a mechanical system 
of  order k if (T 2~- 1, coL, EL, C* = Leg*C) represents a mechanical system 
of order k. 

It is not hard to show the following result. 

Theorem 3.2. (T* (Tk - IQ) ,  cok-1, H, C) defines a mechanical system 
of order k iff all the 1-forms Oa are semibasic with respect to the fibration 

f l k - I  o 7[Tk-IQ: T * ( T k - I Q )  ~ Q 

(i.e:, the 0, vanishes along the ilk-l o ~rrk_,Q_vertica 1 vector fields, for all a) 
where ilk-!: Tk-  J Q __. Q, resp., rcr k-,QT*( Tk-1Q) ~ T~- J Q, are the canon- 
ical projections. 

Remark 3.3. Let (S, co) be a symplectic manifold. Two 1-forms a and 
fl are said to be in involution if the bracket {a, fl} = co(Xa, Xa) vanishes, 
where X,  (resp. X~) is the vector field on S defined by ix,co = a (resp. 
ix~co = fl). For the holonomic case it is always possible to show that the l- 
forms { a l , . . . ,  ct,.} are in involution iff there is a local symplectomorphism 
such that the original 1-forms aa, 1 < a < r, are transformed into semibasic 
forms [for a proof see Jacobi's theorem in Duistermaat (1973), p. 100, and 
the Lie corollary in Abraham and Marsden (1978), p. 419]. This result is 
valid, under certain circumstances, for the nonholonomic situation, as was 
shown by Weber. 

4. A N  E X A M P L E  

Consider an elastic beam in the Euclidean space R 3 and suppose that 
the x axis coincides with the beam. If no external forces act on the beam, 
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then its equilibrium configuration is a straight line. But external forces acting 
on the beam induce deflections. These deflections can be represented by 
points of a plane M perpendicular to the beam, i.e., M is the yz plane. In 
the sequel we put q~ =y, q2= z. 

The dynamics of the beam is given by a Lagrangian function of 
order 2, 

~1 , . i . . j  L(q,O, 4) = 2x~qq 

1 _< i, j_< 2, where (ko.) is a nonsingular symmetric matrix which characterizes 
the elastic properties of the beam (Abraham and Marsden, 1978, pp. 488, 
489). Thus, 

(d2L/Oq' 8qJ) = (ku) 

and then L: T2M ~ R is a regular Lagrangian. 
The momenta pil and p~ are defined by 

= .  2 (5) 
j=l  

2 
P~=~L/a~ t~= Z koi] j, 1 < i < 2  (6) 

j=l  

and the Euler-Lagrange equations are 

2 
kii'?l'J=O, 1 _<i_<2 (7) 

j=l  

[We remark that (5)-(7) can be rewritten as 

pi I -b/)~----- 0, p i 2 - - k i j i j J  ~ p l - - 0  

which are the equilibrium conditions of the beam (Abraham and Marsden, 
1978, p. 489).] 

The configuration of the bent beam is a differentiable curve in R 3 and 
(ql(t), q2(t))=(y(t), z(t)) is its projection onto M. We impose the con- 
straints 01 =dq ~. This geometrically means that the bent beam is a curve 
which lies in the xz plane. Thus, (q~(t), q2(t)) satisfies the Euler-Lagrange 
equations with constraints 
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In addition, we have 

which implies 

Hence 

OI \ - ~  Oq I dt 

,2 '/S 
k l 2 d"q" = A k22 = 0 

dt 4 

which leads to 

d4q2 - 0 

d t  4 

(see K~rmhn and Biot, 1940, p. 269). 

dt  4 ] 

de Le6n and Rodrigues 

A P P E N D I X  

Let a be a semibasic form of type u on T~Q.  Then a defines a mapping 

D~:  T ~ Q ~  T * ( T ' - U Q )  

given by 

where 

and such that 

( X ,  D ~ ( j ~ ) ) = a ( j ~ - " ~ ) ( X )  

X E T j ~ - , , , , . ( T S - " Q )  and . , ( ~ T j ~ , ~ ( T ' Q )  

rp~_.(g) =x  

Since a is semibasic, D~ is well-defined. If  a is locally given by (2), then we 
obtain 

D ~ ( z g ,  z ~ ,  . . . , z ~ ) = (  z~ ,  . . . , zs-,,A crO, . . . , a%-")  
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From which we easily deduce the following properties: 
1. The diagram 

T~Q , T*(T~-'Q) 

T~-,Q 

is commutative, where ~r~-,,e is the canonical projection. 
2. D * , ~ _ , = a ,  where A~_, is the Liouville form on T*(T~-'Q). 
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